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In the design of explosive systems, the generic problem that one must consider is
the propagation of a well-developed detonation wave sweeping through an explosive
charge with a complex shape. At a given instant of time, the lead detonation shock
is a surface that occupies a region of the explosive and has a dimension that is
characteristic of the explosive device, typically on the scale of meters. The detonation
shock is powered by a detonation reaction zone, sitting immediately behind the shock,
which is on the scale of 1 mm or less. Thus, the ratio of the reaction zone thickness to
the device dimension is on the order of 1/1000 or less. This scale disparity can lead
to great difficulties in computing three-dimensional detonation dynamics. An attack
on the dilemma in the computation of detonation systems has led to the invention of
subscale models for a propagating detonation front that we refer to herein as program
burn models. The program burn model does not resolve the fine scale of the reaction
zone; instead the goal is to solve for the hydrodynamics of the inert product gases
on a coarse grid scale, which is insufficient to resolve the physical reaction zone. We
first show that traditional program burn algorithms for detonation hydrocodes used
for explosive design are inconsistent and yield incorrect shock dynamic behavior. To
overcome these inconsistencies, we discuss a new class of program burn models based
on detonation shock dynamic theory. This new class yields more consistent and robust
algorithms that better reflect the correct shock dynamic behavior.c© 2001 Elsevier Science

1 To whom correspondence should be addressed.

870

0021-9991/01 $35.00
c© 2001 Elsevier Science

All rights reserved.



PROGRAM BURN ALGORITHMS 871

1. INTRODUCTION

In the design of explosive systems, the generic problem is the propagation of a well-
developed detonation wave through an explosive charge with a complex shape. At any fixed
time the lead detonation shock is a surface that has dimensions on the scale of the explosive
device, typically on the scale of meters. The detonation shock is powered by a reaction zone
behind the lead shock, which is on the scale of 1 mm or less. The ratio of the reaction zone
thickness to the device dimension is on the order of 1/1000 or less and this scale disparity
leads to great difficulties in computing three-dimensional (3D) detonation dynamics. An
excellent introduction to detonation systems and applications is described by Davis in [1],
and the physics of detonation phenomena is expertly described in the classic text by Fickett
and Davis [2].

Assume (as we do for the rest of the paper) that the problem of modeling the propagation
of the detonation shock and the motion of the reacted products in the following flow is
completely described by a solution to the compressible Euler equations for a reactive flow,
with a specified equation of state for the explosive and reaction rate of the form

e= e(p, v, λ), r = r (p, v, λ).

Here p, v, λ are the pressure, the specific volume, and the progress variable of chemical
reaction. Whenλ = 0 the explosive is unreacted;λ = 1 corresponds to a completely reacted
explosive.

Prediction of the detonation dynamics can be achieved by direct numerical solution (DNS)
of the Euler equations. In order to obtain a highly accurate solution to the reactive Euler
equations that will calcuate the detonation speed to 5% or less, it is essential to have enough
points in the reaction zone. In our own studies [9], we showed that as many as 20–100 cells
in the streamwise direction are required for sufficient accuracy for engineering calculations.
When one considers the consequences of such a fine scale for the reaction zone, combined
with the requirement for global temporal and spatial accuracy in the meter-sized domain
of the engineering device, huge computational resources are required, even with current
TeraFlop parallel computing resources.

The computational barrier to three-dimensional (3D) design of explosive systems by
direct solution of the reactive Euler equations is not newly discovered and dates back to
WWII when one of the first uses of computers was explosive design. The barrier presents
a dilemma for modelers. One needs to make predictions in engineering systems but one
cannot overcome the huge computational requirements and associated costs needed to
compute on the device scale. (Onecancarry out adequately resolved DNS of the reactive
Euler equations on scales that are least two orders of magnitude smaller than the system
scale.) The difficulty, posed by trying to solve a physically correct but computationally
intractable model for an explosive system, is similar to the prediction of incompressible
turbulence on engineering device scales by direct numerical solution of the Navier–Stokes
equations. Turbulence modeling of flows on larger engineering-device scales has led to the
development of subscale models for turbulence and most recently to large eddy simulation.
The computational requirements for large-eddy simulations are orders of magnitude less
than those required for direct solution of the Navier–Stokes equation.

For the computation of detonation systems, an attack on the dilemma has led to the
invention of subscale models for the propagating detonation front that we refer to herein as
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program burn (PB) models. The program burn model doesnottry to resolve the fine scale of
the reaction zone in the sense of a DNS simulation. The program burn simulation (PBS) does
try to solve for the flow in the inert product gases on a grid that is too coarse to resolve the
physical reaction zone of the reactive Euler equations. Instead, a PBS deposits a prescribed
amount of energy (and more generally mass and momentum) into avery smallnumber of
computational cells behind a shock front with precalculated motion. The effective reaction
zone in a PBS is a region where source terms are added to account for the deposition of
energy, and it is always behind the location of the precalculated shock front. To get the
advantages of simulation with lower computational requirements, the effective reaction
zone is always constrained to be a finite number of cells thick (between 1 and 8, but much
less than 20, say).

As the grid is refined and the cell thickness goes to zero, the region where the source terms
make their contribution is limited to a sharp front with zero thickness across which there are
jumps in the dependent state variables. The program burn source doses historically have been
prescribed only by peculiar, discrete algorithms used in particular codes. Necessarily, these
discrete algorithms must be limited to partial differential equations for the inert compressible
Euler equation with delta function sources centered at the location of the sharp front.
The front is then externally prescribed by a precalculation of the shock motion. The delta
function source terms, represented in the partial differential equations along with the shock
motion specification, define the program burn model independent of its discretization and the
numerical algorithms that might be used to solve it. One thing is clear from this discussion:
the solutions of the reactive Euler equationsare notsolutions of the equations of the program
burn model.

In this paper we consider the following problem: How does one make consistent and
robust discrete approximations of physical detonation flows with a finite length reaction
zone as modeled by the reactive Euler equations, with a discrete approximation to a program
burn model that has the reaction zone and shock collapsed entirely to a single discontinuous
front?

If we want to design a PB model that has solutions that are in some sense close to those
of the Euler equations for a reactive flow, then the quality of the predictions will depend on
the accuray of the shock dynamics that are used as input in the precalculation of the shock
motion. If we use an approximation to the shock motion, then the accuracy of approximate
theory in regard to the shock dynamics is paramount. This issue must be decided irrespective
of numerics. Detonation shock dynamics (DSD), developed by a collaboration of the authors
Bdzil and Stewart [3, 4], is an asymptotic theory based on a large radius of curvature of
the shock relative to the reaction zone length and it has been used succesfully to compute
detonation shock motion. A compendium of results of DSD can be found in the review
paper [5].

In Section 2 we briefly present direct numerical simulations of the reactive Euler equations
that are to be used as the benchmark calculations for the rest of the paper. The geometry
considered is planar, cylindrical, or spherical. For both cylindrical and spherical geometry,
curvature of the lead shock is present. In Section 3 we compare the solutions obtained from
DNS to those obtained from DSD. In Section 4 we discuss a traditional pressure-based
program burn (TPB) model. Section 5 presents modified models aimed at improving the
weaknesses inherent in the TPB model, especially when curvature is present. This new class
of models will be referred to as modified pressure-based program burn models (MPB). The
essential difference between TPB and MPB is that TPB uses a Huygen’s construction for
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the shock propagation rule (shock propagates with the Chapman–Jouguet speed), while
if curvature is present, MPB uses a propagation rule based on DSD. Finally, conclusions
are given in Section 6. We also note that in the mid-1990s Bdzil and Stewart modified
major TPB codes at Los Alamos National Laboratory to include curvature dependence
using DSD theory. Also, systematic comparisons were made between TPB models and
DNS simulations and their work was not published at that time. To our knowledge this is
the first discussion of these models and is a partial record of our earlier work.

2. DIRECT NUMERICAL SIMULATIONS

Here we present the reactive Euler equations whose solutions are used to compare with
those of the program burn models presented in subsequent sections. We take the DNS
calculations to be “exact” and assume that any differences in solution structure are due to
the various definitions and approximations inherent in the program burn models themselves.

For the DNS calculations, the conservative formulation of the reactive Euler equations
is given by

EUt + EFx = EG+ Eqr, (1)

where

EU = [ρ, ρu, E, ρλ]T , (2)

EF = [ρu, ρu2+ p, u(E + p), ρuλ]T , (3)

EG = − j

x
[ρu, ρu2, u(E + p), ρuλ]T , Eq = [0, 0, 0, 1]T , (4)

whereρ is the density,p the pressure,u the velocity, andE the total energy, defined by

E = ρ
(

e+ 1

2
u2

)
. (5)

The specific internal energy ise, andλ is the mass fraction of the deficient component with
λ = 0 for unreacted material andλ = 1 for completely reacted material. The geometric
source terms from the flow divergence are represented explicitly byEG. The choice of
j determines the geometry;j = 0 for planar, j = 1 for cylindrical, or j = 2 for spherical
geometry. If one assumes a cylindrical/spherical shock, the shock total curvatureκ is related
to the radiusx from the center of the coordinate system byκ = j/x.

The explosive is described by the constitutive forms for the energy and rate laws. For this
paper our baseline example of a condensed phase explosive is that considered in [9] and
used as a test problem in [6, 7]. The equation of state is for an ideal gas

e= 1

γ − 1

p

ρ
− Qλ, (6)

whereγ is the ratio of specific heats andQ is the heat of reaction for the detonation. The
reaction rate is given by

r = k(1− λ)1/2. (7)
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FIG. 1. Plot of the structure for the casej = 1 (cylindrical) at timet = 40µs.

The valuesQ = 4 mm2/µs2 andγ = 3 are taken, with upstream conditionsp0 = 0, ρ0 =
2 g/cm3, u0 = 0, andk = 2.5147µs−1. These values give a Chapman–Jouguet detonation
speed ofDCJ= 8 mm/µs, and a steady state one-dimensional reaction zone length of 4 mm.

To carry out the DNS, these equations are solved with a third-order TVD Runge–Kutta
scheme with a fifth-order WENO spatial scheme [10, 11, 14]. The grid is uniform with
1x = 0.1 mm, which puts roughly 40 grid points in the reaction zone. Results for 80 grid
points in the reaction zone are essentially the same. In all cases, the CFL number was taken
to be 0.4. Figures 1 and 2 show wave structures for the case of the case of cylindrical and
spherical geometry, respectively. For all the figures shown in the paper, the density unit is
g/cm3, the pressure scale is GPa, the velocity scale is mm/µs, the length scale is mm, and
the curvature scale is mm−1.

3. DSD ASYMPTOTIC THEORY AND COMPARISON TO DNS

In this section we briefly state the asymptotic theory of detonation shock dynamic theory,
a key ingredient of the program burn model that is presented in subsequent sections. We
compare certain flow features between DSD theory and the DNS calculations of the reactive
Euler equations presented in the previous section.

3.1. DSD Theory

DSD theory is an asymptotic theory which describes the motion of the detonation shock
via an intrinsic partial differential equation that relates the normal shock velocityDn,
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FIG. 2. Plot of the structure for the casej = 2 (spherical) at timet = 40µs.

the shock curvatureκ, and their time derivatives [5]. For our purposes we focus on the
simplest version of DSD that relates the normal shock velocityDn to the curvature. The
relevant equations, consistent with an asymptotic truncation of the reactive Euler equations
(presented in a nearly integrable form), are

∂(ρUn)

∂n
+ κρ(Un + Dn) = 0, (8)

∂
(
ρU2

n + p
)

∂n
+ κρUn(Un + Dn) = 0, (9)

∂

∂n

(
e+ pv + 1

2
U2

n

)
= 0, (10)

∂λ

∂n
= − 1

Un
(r ), (11)

wheren is the coordinate normal to the detonation front, andUn = un − Dn is the relative
normal velocity in the shock-attached frame.

An alternative form of the energy equation, dubbed themaster equation, is found by
using the chain rule one(p, ρ, λ) in (10), using the mass equation to substitute for the
spatial derivative ofρ, and then using the momentum equation to substitute for the spatial
derivative of the pressurep. With the standard definition of the sound speed for an ideal
equation of state (EOS),c2 = γ p/ρ, one obtains

(
c2−U2

n

)∂Un

∂n
= Qr(γ − 1)− κc2(Un + Dn). (12)
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FIG. 3. Plot of the shock speedDn and the sonic (∗) states as a function ofκ.

Thegeneralized CJ conditionsfollow from the master equation. When the flow is locally
sonic with

η ≡ c2−U2
n = 0, (13)

and the velocity gradient is finite, it follows that the right-hand side of (12) must also be
zero; i.e.,

8 ≡ Qr(γ − 1)− κc2(Un + Dn) = 0. (14)

The first condition is thesonic condition, while the second is thethermicity condition.
These conditions hold for detonations that travel near or at the CJ detonation velocity. The
simultaneous mandates that the sonic and thermicity conditions be satisfied mandates a
relationship betweenκ andDn. For such solutions one can find the sonic, or star (∗), states.
The solution of this nonlinear eigenvalue problem can be done numerically if desired and
the sonic states can be found as a function of the local curvatureκ. A plot of the sonic states
is shown in Fig. 3 for the condensed phase example of the previous section. Note that for
κ = 0, the sonic states are the CJ states, andDn = DCJ.

3.2. DSD–DNS Comparisons

Comparisons of DSD theory with DNS have been carried out for the cases of deto-
nation along a two-dimensional rate stick, in a converging channel, and in a diverging
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FIG. 4. Plot of Dn and the sonic (∗) states as a function ofκ for DSD (solid) and DNS (circles). Cylindrical
geometry.

channel [6]. In all three cases, the shock front locations as computed from DSD the-
ory and from DNS were compared and good agreement between the two was found.
Similar comparisons can be found in [7, 8]. However, a simple and direct comparison
between DSD and DNS can be carried out by considering cylindrical or spherical ge-
ometry where the curvature is explicitly known and the equations are essentially one-
dimensional.

Figures 4 and 5 show a comparison of the shock velocity versus curvature and the sonic
states calculated from the DNS of the Euler equation, and that predicted from DSD theory for
cylindrical and spherical geometry, respectively. In each figure, the solid curve corresponds
to DSD theory, and the circles correspond to the DNS calculations. The wave front was
determined to be at the location whereλ was 0.1. The shock speed was computed from a
numerical difference of the shock locations. Note the good agreement for both cylindrical
and spherical geometries as the curvature goes to zero, i.e., the long-time solution. For large
values of the curvature, the agreement between the two diverge, either due to the transient
effects of the DNS calculations at the earlier times or due to the first-order and quasi-steady
approximation of DSD theory, where the time derivatives have been ignored.

4. TRADITIONALLY IMPLEMENTED PROGRAM BURN MODELS

Here we discuss the basic ideas behind the implementation of program burn as it has tradi-
tionally been implemented in design hydrocodes used for explosive engineering. Although
several versions exist, we shall discuss only one model, the traditional pressure-based
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FIG. 5. Plot of Dn and the sonic (∗) states as a function ofκ for DSD (solid) and DNS (circles). Spherical
geometry.

program burn model. The other models have similar strengths and weaknesses, and one
model is sufficient for our discussion.

As a computational model, program burn was first posed as a discrete numerical algorithm
and not in terms of a differential formulation. One of the earliest published references to
an algorithm of this type is found in [13]. The algorithm has the following ingredients:
(i) There are a predetermined, computational grid and a chosen algorithm for the inert
hydrodynamics. The grid defines the domain of the explosive and the algorithms are used
to solve the Euler equations for the (inert) explosive products. (ii) A graded set of “burn
times,” tb, are assigned to each computational cell on the grid. The burn times are the times
at which the detonation shock front crosses the coordinates of the initial position of the
computational cell. The traditional way to compute the burn times is to select the unreacted
explosive geometry, pick the locus of an initial Chapman–Jouguet (CJ) detonation, and then
compute the motion of the detonation shock emanating from the initial locus by means of
a Huygens construction. The Huygens construction propagates the shock normal to itself
at the constant CJ wave speed,DCJ. (iii) A cell-based algorithm either adds energy to
designated burning cells or modifies the equation of state in cells during the interval of the
shock passage over the cells, as dictated by the precalculated burn times. The equation of
state adjustment has been done in various ways through increments in either the pressure
or the specific volume, hence the variations referred to earlier.

In what follows, we give a description of a traditional pressure-based program burn
algorithm which modifies the equation of state in the burning cells. The definitions of the
burn fraction, the burn time field, precalculated shock motion, and modification of the
equation of state are key ingredients of the model.
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4.0. Definitions

4.0.1. Burn Fraction

Based on a previously calculated assignment, each cell is assigned a burn time,tb. If the
current time of a cell is below the burn time,t < tb, then the cell is not burning and the burn
fractionY is assigned zero. Ift > tb, then the burn fraction must be calculated. The burn
fraction is usually assigned to be the volume fraction of the undisturbed cell that has been
crossed by the detonation shock at that time and hence has a computed value, 0<Y< 1.
The details of the burn fraction assignment depend on the grid and specific algorithm and
whether the burn times are stored at cell centers or at the nodes. If the whole cell has been
crossed, the burn fraction is simplyY= 1.

4.0.2. Burn-Time Field

Once the burn-fraction algorithm is selected, the discrete field of burn fraction can be
precalculated from the discrete field of burn times. While (as the grid is resolved) the
burn times are limited to a piecewise continuous field in the domain of the unshocked
explosive, the discrete burn-fraction field must limit to a singular Heaviside function which
is attached to the contours of the burn-time field (i.e., the precalculated shock position). The
burn time field is precalculated with a Huygens construction. Thus, once the unreacted
explosive geometry is selected and the initial locus of an initial CJ detonation is picked, the
motion of the detonation shock that emanates from the initial locus is computed by means
of a Huygens construction.

4.0.3. Shock Surface Motion and the Limits of Discrete Fields

The way to express these ideas mathematically is as follows. Let the burn-time field be a
piecewise continuous field with a discrete representation on a grid which covers the domain
of the unreacted explosive, given by

tb(Ex). (15)

Then at a fixed timet0, the shock locations are the contours of the burn-time field

t0 = tb(Exs), for Ex = Exs. (16)

The limit of the discrete burn-fraction field at a timet0 as the mesh is resolved is represented
by the Heaviside function

H [(Ex − Exs(t0))× n̂], (17)

wheren̂ is the normal to the shock that points in the direction of propagation.
As an example, consider a one-dimensional detonation wave propagating with constant

positive speedDCJ. Then, according to Huygens’s construction, we have

dxs

dt
= DCJ, (18)
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wherexs is the location of the detonation front at timet . Integrating we get the motion rule
for the front

xs(t) = x0+ t DCJ, (19)

wherex0 is the initial position. The domainx < x0 is assumed to be completely reacted,
and is unreacted forx > x0. This relationship can be inverted to yield the burn-time field

tb(xs) = xs − x0

DCJ
. (20)

For the discrete approximation, let the numerical grid have a uniform mesh,xi , with grid
spacing1x. Then the discrete version of the burn field can be written as

tb(xi ) = xi − x0

DCJ
, for xi > x0. (21)

Note that the burn time is not defined forxi ≤ x0, which indicates that this region of the
flow field has already reacted. Also note that the burn time is piecewise continuous in the
unreacted domain.

For the prescription of the burn-fraction, which we shall denote byYi , we updateYi

according to the rule

Yi =


0 xi > xs,
xs− xi
1x xs −1x < xi < xs,

1 xi < xs −1x.

(22)

This particular description of the burn fraction is defined over a single cell. In the limit as
1x→ 0, we see that the burn fraction approaches a Heaviside function. Figure 6 shows
a sketch of the shock position as a function of time and a sketch of the burn fractionY,
distributed over two cells. The use of the burn fractionY is described in more detail in the
following section.

FIG. 6. (A) Sketch of the shock locationxs(t) as a function of time. (B) Sketch of the burn fractionY on a
discrete grid.
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4.0.4. Modification of the Equation of State and Apparent Weak Detonation Structure

In the traditional pressure-based program burn algorithm one assumes an equation of
state for the inert products

eproducts(p, v) ≡ e(p, v).

Since condensed explosives are being considered, the initial pressures (one bar) are ex-
tremely small compared to the detonation pressures behind the lead shock (hundreds of
kilobars) such that the pressure ahead of the shock in the unreacted explosive can be con-
sidered to be zero. This is similar to the strong shock approximation. In a PBS, the burning
cells where the burn-fractionY is between 0 and 1, the equation of state is modified by
replacingp with p/Y to obtaineproducts(p/Y, v). This is equivalent to replacing the pressure
with a partial pressure which is reduced by the burn-fraction for that cell. WhenY = 1, the
equation of state for the products is recovered. Finally, in the unburnt cells in the unreacted
explosive one must give an energy that is consistent with the heat of detonation. This is
done in the following way. One considers the standard Rankine–Hugoniot relations for a
gasdynamic discontinuity for a steady Chapman–Jouguet discontinuity traveling at labora-
tory speedDCJ. One then sets the energy datume0 in the unreacted explosive consistent
with that algebra. The equation of state for TPB can thus be written as

e= e0× (1− H [(Ex − Exs(t))× n̂])+ eproducts(p/Y, v)× H [(Ex − Exs(t))× n̂]. (23)

An example of selectinge0 is presented in the following section.
If we consider the pressure variation across the shock during a PB, the pressure starts out

from zero and is brought up to a high value near the CJ pressure. Indeed, when the burn
fractionY is zero, the pressure is necessarily assumed to be zero. In fact, the scheme com-
putes the pressure and is based on an assumed equation of state. Therefore, the underlying
hydrodynamic algorithm must increment the pressure in such a way that the internal energy
is assumed to befinite. A simple conclusion is that the effective reaction zone structure of
traditional program burn starts at the unreacted state at the ambient pressure, andnot at
the shock state. If the program burn algorithm can be interpreted in terms of an effective
distributed rate law, then the corresponding detonation structure looks like a weak deto-
nation, and not a strong detonation. Note that the physically based argument that a weak
detonation needs a supersonic trigger to start the chemical reaction is absent in a PBS, since
the precalculated shock motion provides the sequenced burn-times for the cells that trigger
the change in the equation of state in the vicinity of the shock. An alternative interpretation
is that the PB scheme is a capturing scheme which intends to capture states that are near or
at the steady state equilibrium CJ values. Hence, the physical reaction zone structure from
the inert unreacted shock state (the von Neumann spike) to the sonic point that normally
would be computed as part of the reaction zone in a DNS is cut off and not represented.

4.1. Example: Ideal EOS

To illustrate the traditional implementation of program burn, we will start with an ideal
EOS for the detonation products,e(p, v)

e(p, v) = 1

γ − 1

p

ρ
.
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4.1.1. CJ States

To compute the CJ states, we first assume that the unburnt upstream state (with the strong
shock approximation) ahead of the wave is given by

ρ = ρ0, u = 0, p = 0, e= e0, (24)

with e0 unspecified at this point (but to be chosen in the course of the analysis). Let [ ]=
( )0− ( )b denote the jump in a quantity across the interface from the 0-state (Y = 0) to
the completely burnt state (Y = 1) denoted by ab subscript. The normal jump conditions
across the interface moving with speedDn are given by

[ρ(un − Dn)] = 0, (25)

[ρun(un − Dn)+ p] = 0, (26)

[E(un − Dn)+ un p] = 0, (27)

whereE is the total energy defined earlier. With the ideal EOS for the burnt products, the
jump condition algebra derives a quadratic equation for the normal particle velocityun,
say. If we identify the speedDn as the CJ value (DCJ), the quadratic equation forun can be
solved to give

un = DCJ±
√

D2
CJ− 2(γ 2− 1)e0

γ + 1
. (28)

The CJ-state is found by setting with the zero of the argument of the radical equal to
zero, which leads to the identification of either theDCJ in terms of the energye0 or vice
versa. Since we generally regardDCJ as being given experimentally, we choose to write the
condition as

e0 = D2
CJ

2(γ 2− 1)
. (29)

Then the CJ-states are

ρCJ= ρ0

(
γ + 1

γ

)
, pCJ= ρ0D2

CJ

γ + 1
, uCJ= DCJ

γ + 1
. (30)

It also follows simply that the CJ-state is locally sonic. Note that in working out the Rankine–
Hugoniot jump conditions across a program burn discontinuity, from the unreacted explosive
to the burnt explosive where the burn fractionY is set equal to one, one obtains exactly
the same Rankine–Hugoniot algebra as the reactive Euler equation whereλ is set equal to
one. Thus, the variation of a burn-fraction variable has no effect on the calculation of the
CJ-states themselves.

As an example, we take the condensed phase explosive found in [9]. Withγ = 3, ρ0 =
2 g/cc, andDCJ= 8 mm/µs, we get for the CJ-states

ρCJ= 8

3
g/cc, pCJ= 32 GPa, uCJ= 2 mm/µs. (31)
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4.1.2. Equation of State with Modified Pressure and Effects on the Structure

In keeping with the notion that one replacesp with p/Y in the burning cells with 0<
Y ≤ 1, the ideal EOS becomes

e= 1

γ − 1

p

Yρ
. (32)

Again one assumes that in the fresh material one has the same initial specific internal energy
e0, and the role ofe0 is the same as the heat of detonation.

To further analyze this structure, letUn = un − Dn be the relative normal velocity in the
shock-attached frame. For a quasi-steady traveling wave, the RH relations hold throughout
the structure, except now the internal energy has the dependence on the burn fractionY. As
before, one can again solve the RH relations

ρUn = −ρ0Dn (33)

ρU2
n + p = ρ0D2

n (34)

e+ 1

2
U2

n +
p

ρ
= e0+ 1

2
D2

n, with e= p

ρY(γ − 1)
, (35)

for a quadratic equation inUn with solutions

Un = − [1+ (γ − 1)Y]Dn ±
√

D2
n − 2(γ − 1)Y[2+ (γ − 1)Y]e0

2+ (γ − 1)Y
. (36)

WhenY = 0, the plus root corresponds to the unreacted flow state, and hence to the starting
point for a weak detonation structure,

Un = −Dn, or un = 0. (37)

The root associated with the minus sign is pathological and hasUn = 0 or un = Dn, and
corresponds to a finite pressure but infinite density. In contrast, the standard strong shock
stateUn = −(γ − 1)/(γ + 1)Dn is achieved if the equation of statee= pv/(γ − 1) is
used instead of the modified equation of statee= (p/Y)v/(γ − 1).

The issue is which state is selected, and we turn to the acoustic character of the distributed
structure next. From the fundamental definition of the sound speed,

c2 = p/ρ2− ∂e/∂ρ

∂e/∂p
,

we have

c2 = p

ρ
[1+ (γ − 1)Y].

Next, if we use the energy equatione+ p/ρ +U2
n/2= D2

n/2+ e0 and use the definitions
of e and the last result forc2, we can eliminatep/ρ in favor of c and write an expression
for the sonic parameter,η, as

η ≡ c2−U2
n =

[
e0+ 1

2

(
D2

n −U2
n

)]
(γ − 1)Y −U2

n .
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FIG. 7. UCJ,Y-plane showing the trajectory of the weak CJ detonation. The dash curve corresponds to the
sonic locus given by (38) and the solid curve corresponds to the weak structure given by (36). (The strong structure
branch is not shown.)

If the detonation wave starts out on the weak branch, then atY = 0,c = 0, andUn = −Dn,
the sonic parameterη = −D2

n < 0, and the wave is supersonic at the point of the lead
disturbance. In fact one can compute the sonic locus in a (U2

n ,Y)-plane by settingc2 = U2
n

to obtain

U2
n =

γ 2(γ − 1)e0Y

[1+ 1/2(γ − 1)Y]
. (38)

The character of the structure of the (weak) detonation can be characterized by plotting its
trajectory in a (Un,Y)-plane. The weak CJ solution trajectory starts from the undisturbed
state,Un = −Dn and terminates at the sonic state. Figure 7 shows this trajectory for the
specific case ofDn = DCJ. Note the square root behavior inUn asY→ 1, suggesting that
the normal derivative has a square root singularity. This is due to the fact that the thermicity
condition in the master equation does not vanish at the sonic point.

The other required ingredient for a weak detonation is a supersonic trigger. Ordinarily, the
supersonic trigger is regarded as physical. But for its application as a numerical algorithm,
program burn assigns times at which the cell releases its energy. Specifically, the value of
the burn fraction is changed fromY = 0 toY = 1 in proportion to how much of the particle
cell has been crossed by an assumed shock wave. Therefore, the distribution of times when
the cell is crossed by a shock is known a priori, and is used to create the supersonic trigger.
For steady, one-dimensional flow for a CJ detonation, the burn times simply and exactly
reflect the CJ detonation velocity.
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We note that the state variables do depend on the burn fraction if the burn fraction were
distributed in a discrete representation, i.e., not resolved to a Heaviside step function. Thus
the burn fraction distribution on a finite mesh has the appearance of a pseudo-reaction-zone
structure. We will model this distribution not by a difference-based scheme, but instead by
an “effective” rate law in the steady detonation frame,

Un
∂Y

∂n
= R(Y), (39)

where R(Y) is the effective reaction rate. In actual practice this rate is not given at all,
rather the numerical scheme that defines the burn fraction merely makes an assignment
for the increase inY such that it goes toY = 1 when the detonation shock crosses the
computational cell completely, andR(Y) is inferred from the details of that assignment.
But certainlyR(Y) is both grid- and algorithm-dependent.

Integration of (39), with the weak-structure relation betweenUn andY and the condition
thatY = 0 atx = 0 (which is equivalent to the specification of the triggering event at the
program burn time), leads to a distribution functionY(x)which has the basic profile shown
in Fig. 6.

An important observation is that the thickness of the heat-release zone in the program burn
reaction zone will be a function of the grid thickness and can be computed asymptotically
as O(1x), such that as1x→ 0, the program burn reaction zone vanishes, as measured
relative toanyphysical length scale. Thus, the effect of the numerical algorithm thatR(Y)
imitates is to approximate a delta function, centered at the burn times and locations on the
grid as dictated by the burn table.

4.2. Numerical Results of TPB and Comparisons to DNS

Here we present numerical results comparing the solutions obtained using the traditional
pressure-based program burn model (TPB) to the solutions obtained from a DNS calculation
that is desribed in Section 2. For the TPB model we solve the corresponding nonreactive
Euler equations with the EOS given by (23) and (29). Although most TPB implementation in
current codes use a second-order scheme, we use the same (high-order) scheme that was used
for the DNS calculations to minimize differences that may result from the use of different
numerical algorithms. To restate, we assume that the DNS calculations are “exact,” and that
any differences in solution structure will be due to the various approximations inherent in
the TPB model.

A mesh with one grid point in the reaction zone (1x = 2 mm) is used that is typical of
that used in engineering practice. No attempt is made here to optimize nor study the effect
of grid spacing on the solution structures. However, the grid is fine enough to resolve the
inert hydrodynamics behind the wave front.

Figure 8 shows the results from the DNS (solid) and from the TPB (circles) calculations
for planar geometry. (Note that the density spike shown in the DNS record is associated
with the initial start-up transient.) In each case, the solutions were stopped when the shock
location reachedxs(t) = 100 mm. The arrival times of the two calculations is seen to be
approximately the same (for DNS,t = 12.72µs; for TPB,t = 12.05µs), the 5% relative
difference being due to differences in the grid resolutions and to the modeling assumptions
of the reaction zone by the TPB model. Note how well the program burn model captures
the overall structure. The only differences are seen in the density plot, where the DNS
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FIG. 8. Plot of the structure for planar geometry atxs(t) = 100 mm. Circles correspond to the TPB model
(t = 12.05µs), and the solid curve to DNS (t = 12.72µs).

calculates a weak density jump downstream of the lead shock while the TPB calculations
(with the coarser grid) do not, and in the lead shock region, where the DNS calculations
show a strong detonation profile while the TPB calculations show a weak detonation profile.
We also ran long-time solutions until the shock was located atxs(t) = 900 mm, as shown
in Fig. 9. The arrival times of the two calculations have a relative difference of less than
1% (for DNS,t = 112.77µs; for TPB,t = 111.97µs). Again, note how well the program
burn model captures the overall structure.

The major weakness of the TPB model, however, occurs when curvature is present.
Figure 10 shows the structure from the DNS and from the TPB calculations for the case of
cylindrical geometry. Since the TPB uses a Huygens construction to propagate the shock,
we see that the arrival time of the shock to the locationxs = 100 mm is much quicker
(t = 12.075µs) than that of the DNS calculations (t = 15.3µs); this represents roughly a
21% error in the arrival times. This large difference is not due to grid resolution, but rather
to the TPB modeling of the shock speed using a Huygens construction. Since Huygens’s
construction overestimates the speed of the shock when curvature is present, we see no-
ticeable differences in the solution structures downstream of the lead shock. We also ran
long-time solutions for the cylindrical and spherical cases, until the shock was located at
xs(t) = 900 mm as shown in Fig. 11. A close-up look at the structure is shown in Fig. 12.

In terms of the structure, the program burn model does seem to capture the overall structure
at the longer times rather well. A closer look at the time behavior can be examined by com-
paring the shock speed and the sonic states to those obtained from DSD theory (see Fig. 13).
Note that the TPB-calculated shock velocity overpredicts the DSD-calculated velocity, and
that the sonic states are only asymptotic to the sonic states obtained from DSD theory.
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FIG. 9. Plot of the structure for planar geometry atxs(t) = 900 mm. Circles correspond to the TPB model
(t = 111.97µs), and the solid curve to DNS (t = 112.77µs).

FIG. 10. Plot of the structure for cylindrical geometry atxs(t) = 100 mm. Circles correspond to the TPB
model (t = 12.075µs), and the solid curve to DNS (t = 15.3µs).
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FIG. 11. Plot of the structure for cylindrical geometry atxs(t) = 900 mm. Circles correspond to the TPB
model (t = 112.0µs), and the solid curve to DNS (t = 117.6µs).

FIG. 12. Blow-up of the shock structure shown in Fig. 12 for cylindrical geometry atxs(t) = 900 mm. Circles
correspond to the TPB model (t = 112.0µs), and the solid curve to DNS (t = 117.6µs).
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FIG. 13. Plot of Dn and the sonic (∗) states as a function ofκ for DSD (solid) and TPB (circles).

The above results illustrates the strength and weaknesses of using the traditional program
burn model to capture the physics of real detonations. For the planar case, the shock is
propagated at the correct CJ speed, and the structure is represented well with only 1/40th
the number of grid points. This represents significant computational savings. However,
when curvature is present there are major differences in not only the shock location but
also in the structure of the solution. These differences are due to the fact that Huygens’s
construction overestimates the speed of the propagating shock. Since curvature is present
in almost all engineering devices, it is essential to properly take into account effects due to
curvature. It is this weakness that we address in the subsequent section of this paper.

5. MODIFIED PRESSURE-BASED PROGRAM BURN MODELS

In the previous section we have seen that when curvature is present, the TPB model
overestimates the detonation shock speed, due to the use of Huygens’s construction. This
leads to significant differences of the shock location and to a lesser extent to differences
in the structure between the DNS and the TPB simulations. A simple modification can be
made by extending the theory to include curvature dependent shock velocity, as is found in
DSD theory. In particular, we modify the burn times to include the curvature dependence

dxs

dt
= Dn(κ), (40)

and computeDn according to DSD theory, for a particular equation of state. Having done
this the next question is what is the best way to model the physical reaction zone? Next,



890 BDZIL, STEWART, AND JACKSON

we present four models that aim at being improvements to the TPB model, especially when
shock curvature is present.

5.1. Model I or MPB-1

In this model we modify the upstream internal energy to account for curvature effects,
namely

e0 = D2
n

2(γ 2− 1)
, (41)

whereDn = Dn(κ) is the curvature-dependent shock velocity determined from DSD theory.
This program burn model is composed of modification of the burn times according to (40)
and the assignment of the explosive upstream energy according to (41).

Figure 14 shows a comparison of results of the DNS and MPB-1 for cylindrical geometry.
Note that a simple change in the way the burn times are computed and in the definition
of the upstream internal energy can lead to significant reductions in differences between
the two. As for the case of comparison between the TPB and DNS, the simulations were
stopped when the shock location reachedxs(t) = 100 mm. The arrival times of the shock
for the MPB-1 and DNS is seen to be approximately the same (for DNS,t = 15.3µs; for
MPB-1,t = 14.2µs), and the 7% relative time of arrival difference is a major improvement
when compared to the 21% relative time of arrival difference in the arrival times found in
comparing the TPB and DNS. Comparing Figures 10 and 14, we see that the MPB-1 does a

FIG. 14. Plot of the structure for cylindrical geometry with1x = 2 mm atxs(t) = 100 mm. Circles cor-
respond to the MPB-1 (t = 14.2µs), and the solid curve to DNS (t = 15.3µs).



PROGRAM BURN ALGORITHMS 891

FIG. 15. Plot of the structure for cylindrical geometry with1x = 2 mm atxs(t) = 900 mm. Circles correspond
to the MPB-1 (t = 116.76µs), and the solid curve to DNS (t = 117.6µs).

better job of capturing the pressure and velocity profiles than does the TPB model. The long
time solution, whenxs(t) = 900 mm, is shown in Figs. 15 and 16, and should be compared
to Figs. 11 and 12, for the TPB model.

However, MPB-1 fails to capture the correct sonic (or∗) states. Capturing the correct
sonic states is an important indicator of how well a given scheme does since both the
strong detonation and the weak detonation should terminate at this point. In Fig. 17 we
plot the sonic states as computed from the MPB-1 simulations against those determined
from DSD theory. We take this comparison to indicate that there is still an unacceptably
large discrepancy, even though the correct speed dependence on curvature is incorporated
into the MPB-1 model. In Fig. 18 the computed sonic states are shown for the grid with
1x = 0.5 mm and there is better agreement with the DSD sonic states. In these calculations
the energy released is still over a single grid point, so reducing1x reduces the effective
reaction zone. Also note that the oscillations in the shock speedDn observed in Fig. 17 have
been reduced by grid resolution. Note that extreme refinement of the MPB-1 model violates
the spirit of the program burn model, i.e., that it should be used on a relatively coarse grid,
and no further grid refinements are shown here.

5.2. Model II or MPB-2

For model MPB-2 we keep the specification of the upstream internal energy unchanged

e0 = D2
CJ

2(γ 2− 1)
, (42)
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FIG. 16. Blow-up of the shock structure shown in Fig. 15 for cylindrical geometry with1x = 2 mm at
xs(t) = 900 mm.Circles correspond to the MPB-1 (t = 116.76µs), and the solid curve to DNS (t = 117.6µs).

FIG. 17. Plot of Dn and the sonic (∗) states as a function ofκ for DSD (solid) and MPB-1 (circles) with
1x = 2 mm.
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FIG. 18. Plot of Dn and the sonic (∗) states as a function ofκ for DSD (solid) and MPB-1 (circles) with
1x = 0.5 mm.

but modify the length scale of the program burn reaction zone to mimic the reaction zone
thickness of the physical problem. Thus, we allow the energy to be released over a number
of cells behind the precalculated shock front. However, the resolution of the energy release
is still much too coarse to be considered equivalent to that of a resolved DNS. For the TPB
model, the program burn reaction zone thickness is kept at one grid cell, independent of grid
resolution. Thus, as the grid size becomes smaller, so does the program burn reaction zone
thickness. However, for MPB-2 we preassign a program burn reaction zone thickness which
has a length scale of approximately the same size as that of the physical (DNS) problem,
so that as the grid size becomes smaller, the program burn reaction zone stays fixed and the
number of computational cells within it increases. In particular, ifL is the program burn
reaction zone length, we select the number of computational cells,n, within the zone so
that

n1x = L . (43)

For the DNS example, the 1D Chapman–Jouget reaction zone length is 4 mm. Therefore, for
these tests, we set our program burn lengthL = 4 mm for simplicity. Thus, the MPB-2 model
consists of using the DSD-based burn-time calculations that are given by the integration of
(40), the assignment of the full upstream energy according to (42), and the release of the
energy overn-cells according to (43).

Figures 19 and 20 show results for MPB-2 for two different grid resolutions. In Fig. 19,
the grid resolution is 2 mm andn = 2. Note that the near-shock structure is quite different
from that of MPB-1 (compare Fig. 14). For MPB-1, the upstream value ofe0 is reduced
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FIG. 19. Plot of the structure for cylindrical geometry with1x = 2 mm atxs(t) = 100 mm, withn = 2.
Circles correspond to the MPB-2 (t = 14.5µs), and the solid curve to DNS (t = 15.3 µs).

FIG. 20. Plot of the structure for cylindrical geometry with1x = 0.5 mm atxs(t) = 100 mm, withn = 8.
Circles correspond to the MPB-2 (t = 14.5 µs), and the solid curve to DNS (t = 15.3 µs).
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FIG. 21. Plot of the structure for cylindrical geometry with1x = 2 mm atxs(t) = 900 mm, withn = 2.
Circles correspond to the MPB-2 (t = 117.76µs), and the solid curve to DNS (t = 117.6 µs).

and depends on curvature through the dependence onDn and the structure looks like a
weak detonation. However, for MPB-2, whene0 is fixed to be the full explosive energy, the
discrete near-shock structure looks like a conventional strong detonation. Decreasing the
grid size for MPB-2 to 0.5 mm withn = 8F not only captures the overall flow structure
better than the coarse resolution, withn = 2, but also does a better job of capturing the near-
shock detonation structure. The same is true at the longer times, where we show a blow up
of the structure for a grid resolution of 2 mm withn = 2 (Fig. 21) and a grid resolution of
0.5 mm withn = 8 (Fig. 22). The captured sonic states for MPB-2 are comparable to those
shown in Fig. 18, but were found to be noisy and are not shown.

5.3. Model III or MPB-3a and MPB-3b

Here we present results from third model that has two variations that we dubb MPB-3a
and MPB-3b. In this case we add mass and momentum source terms, in addition to an energy
source term. Models MPB-1 and MPB-2 only added energy source terms. The formulation
for MPB-3 are given by the equation

EUt + EFx = EG+ EQRδ(x−xs(t)), (44)

where

EU = [ρ, ρu, E]T , (45)
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FIG. 22. Plot of the structure for cylindrical geometry with1x = 0.5 mm atxs(t) = 900 mm, withn = 8.
Circles correspond to the MPB-1I (t = 14.5 µs), and the solid curve to DNS (t = 117.6µs).

EF = [ρu, ρu2+ p, u(E + p)]T , (46)

EG = − j

x
[ρu, ρu2, (E + p)u]T , EQ = [Q1, Q2, Q3]T , (47)

whereE is the total energyE = ρ(e+ 1
2u2) ande is the internal energy that is described

below. Note thatRδ(x−xs(t)) is a delta function centered on the program shock locusx = xs(t)
and the geometric source termEG is identical in its first three components of its DNS
counterpart. The source strengthsEQ are identified below.

Model MPB-3a uses the same modified EOS as the TPB model,

e= p/Y

ρ(γ − 1)
, (48)

and the upstream value of the internal energy,e0, is given by (41). Model MPB-3b uses the
standard equation of state without the burn fraction for the ideal gas

e= p

ρ(γ − 1)
. (49)

The upstream value of the internal energy is given bye0 = 0, consistent with the strong
shock approximation. To completely specify the program burn PDEs one must identify the
source term strengthEQ. Various specifications are made and analyzed below. (Alternatively
and perhaps more consistently we could have chosen the energy datum to be given by (42).
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The explosive’s chemical energy is typically assigned to the unreacted solid. But the results
do not depend on a specific constant value of the energy datum. For model MPB-3b,e0 = 0
was chosen for simplicity.)

One way to determine values ofEQ is to make the quasi-steady assumption and neglect
the explicit dependence of curvature in the program burn equations. The lead shock is taken
to be atx = xs(t) with speedDn, which can depend on curvature and is given by theDn, κ

relation from DSD theory. Across the shock we allow for doses to the mass, momentum,
and energy, and the jump conditions across the program-burn shock are given by

[ρ(un − Dn)] = Q1[Y], (50)

[ρun(un − Dn)+ p] = Q2[Y], (51)

[E(un − Dn)+ un p] = Q3[Y], (52)

where [φ] = φ0− φ∗, and the sonic states are determined using DSD theory. Note that in
writing down these normal jump conditions we assumed thatRδ = dY/dn, wheren is the
normal coordinate. Since the shock location is known, and both the upstream states and
the sonic states are known, the jump relations become formulas for explicit evaluation of
the dosesEQ.

Evaluating the jumps leads to the following specifications for the components ofEQ:

Q1 = ρ0D + ρ∗(u∗ − Dn),

Q2 = p∗ + ρ∗u∗(u∗ − Dn), (53)

Q3 = ρ0e0Dn + E∗(u∗ − Dn)+ u∗p∗.

A plot of the sonic states was given previously in Fig. 3 for the condensed phase explosive
example given in [9]. The values ofEQ as computed from these formulas is shown in Fig. 23
for both MPB-3a and MPB-3b, respectively. Results for the two models are given in Figs. 24–
27 for MPB-3a and in Figs. 28–31 for MPB-3b. These results are in qualitative agreements
with TPB (Model I).

FIG. 23. Plot of Q1 (solid),Q2 (dotted), andQ3 (dashed) as a function ofκ for models MPB-3a and MPB-3b,
respectively.
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FIG. 24. Plot of the structure for cylindrical geometry with1x = 2 mm atxs(t) = 100 mm. Circles correspond
to the model MPB-3a (t = 14.2 µs), and the solid curve to DNS (t = 15.3 µs).

FIG. 25. Plot of the structure for cylindrical geometry with1x = 2 mm atxs(t) = 900 mm. Circles correspond
to the model MPB-3a (t = 116.2 µs), and the solid curve to DNS (t = 127.5 µs).
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FIG. 26. Plot of Dn and the sonic (∗) states as a function ofκ for DSD (solid) and model MPB-3a (circles)
with 1x = 2 mm.

FIG. 27. Plot of Dn and the sonic (∗) states as a function ofκ for DSD (solid) and model MPB-3a (circles)
with 1x = 0.5 mm.
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FIG. 28. Plot of the structure for cylindrical geometry with1x = 2 mm atxs(t) = 100 mm. Circles co-
rrespond to the model MPB-3b (t = 14.2 µs), and the solid curve to DNS (t = 15.3 µs).

FIG. 29. Plot of the structure for cylindrical geometry with1x = 2 mm atxs(t) = 900 mm. Circles correspond
to the model MPB-3b (t = 116.2 µs), and the solid curve to DNS (t = 127.5 µs).
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FIG. 30. Plot of Dn and the sonic (∗) states as a function ofκ for DSD (solid) and model MPB-3b (circles)
with 1x = 2 mm.

FIG. 31. Plot of Dn and the sonic (∗) states as a function ofκ for DSD (solid) and model MPB-3b (circles)
with 1x = 0.5 mm.
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6. CONCLUSIONS

We have presented a comprehensive review of the traditional, pressure-based program
burn algorithm and have compared solutions to those of a direct numerical simulation. It
was shown that if curvature is present, the TPB alogrithm overpredicts the shock speed. A
slight modification to the burn times, based on detonation shock dynamic theory, can correct
the shock speed difficulty. Various models are presented and compared to DNS; overall,
the results of Model II (constant upstream value for the internal energy, fixing the program
burn reaction zone length) give results which surprisingly capture the DNS structure, even
with a grid resolution of about five times larger than that of the DNS. We are currently
investigating these models in two-dimensional geometries and extension to real product
equations of state.
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