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In the design of explosive systems, the generic problem that one must consider is
the propagation of a well-developed detonation wave sweeping through an explosive
charge with a complex shape. At a given instant of time, the lead detonation shock
is a surface that occupies a region of the explosive and has a dimension that is
characteristic of the explosive device, typically on the scale of meters. The detonation
shock is powered by a detonation reaction zone, sittingimmediately behind the shock,
which is on the scale of 1. mm or less. Thus, the ratio of the reaction zone thickness to
the device dimension is on the order ¢gflDOO0 or less. This scale disparity can lead
to great difficulties in computing three-dimensional detonation dynamics. An attack
on the dilemma in the computation of detonation systems has led to the invention of
subscale models for a propagating detonation front that we refer to herein as program
burn models. The program burn model does not resolve the fine scale of the reaction
zone; instead the goal is to solve for the hydrodynamics of the inert product gases
on a coarse grid scale, which is insufficient to resolve the physical reaction zone. We
first show that traditional program burn algorithms for detonation hydrocodes used
for explosive design are inconsistent and yield incorrect shock dynamic behavior. To
overcome these inconsistencies, we discuss a new class of program burn models based
on detonation shock dynamic theory. This new class yields more consistent and robust
algorithms that better reflect the correct shock dynamic behavipfoo: Eisevier science
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1. INTRODUCTION

In the design of explosive systems, the generic problem is the propagation of a w
developed detonation wave through an explosive charge with a complex shape. At any f
time the lead detonation shock is a surface that has dimensions on the scale of the expl
device, typically on the scale of meters. The detonation shock is powered by a reaction :
behind the lead shock, which is on the scale of 1 mm or less. The ratio of the reaction z
thickness to the device dimension is on the order/df0DO or less and this scale disparity
leads to great difficulties in computing three-dimensional (3D) detonation dynamics. .
excellent introduction to detonation systems and applications is described by Davis in
and the physics of detonation phenomena is expertly described in the classic text by Fic
and Davis [2].

Assume (as we do for the rest of the paper) that the problem of modeling the propaga
of the detonation shock and the motion of the reacted products in the following flow
completely described by a solution to the compressible Euler equations for a reactive f
with a specified equation of state for the explosive and reaction rate of the form

e=e(p,v,r), r=r(p,v,Ar).

Here p, v, A are the pressure, the specific volume, and the progress variable of chem
reaction. When. = 0 the explosive is unreactedd= 1 corresponds to a completely reacted
explosive.

Prediction of the detonation dynamics can be achieved by direct numerical solution (DI
of the Euler equations. In order to obtain a highly accurate solution to the reactive Et
equations that will calcuate the detonation speed to 5% or less, it is essential to have en
points in the reaction zone. In our own studies [9], we showed that as many as 20—100
in the streamwise direction are required for sufficient accuracy for engineering calculatic
When one considers the consequences of such a fine scale for the reaction zone, com
with the requirement for global temporal and spatial accuracy in the meter-sized dorr
of the engineering device, huge computational resources are required, even with cul
TeraFlop parallel computing resources.

The computational barrier to three-dimensional (3D) design of explosive systems
direct solution of the reactive Euler equations is not newly discovered and dates bac
WWII when one of the first uses of computers was explosive design. The barrier pres
a dilemma for modelers. One needs to make predictions in engineering systems but
cannot overcome the huge computational requirements and associated costs neec
compute on the device scale. (Ocen carry out adequately resolved DNS of the reactive
Euler equations on scales that are least two orders of magnitude smaller than the sy
scale.) The difficulty, posed by trying to solve a physically correct but computationa
intractable model for an explosive system, is similar to the prediction of incompressil
turbulence on engineering device scales by direct numerical solution of the Navier—Stc
equations. Turbulence modeling of flows on larger engineering-device scales has led tc
development of subscale models for turbulence and most recently to large eddy simula
The computational requirements for large-eddy simulations are orders of magnitude
than those required for direct solution of the Navier—Stokes equation.

For the computation of detonation systems, an attack on the dilemma has led to
invention of subscale models for the propagating detonation front that we refer to hereil
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program burn (PB) models. The program burn model da¢BYy to resolve the fine scale of
the reaction zone in the sense of a DNS simulation. The program burn simulation (PBS)
try to solve for the flow in the inert product gases on a grid that is too coarse to resolve
physical reaction zone of the reactive Euler equations. Instead, a PBS deposits a presc
amount of energy (and more generally mass and momentum) irgoyasmallnumber of
computational cells behind a shock front with precalculated motion. The effective react
zone in a PBS is a region where source terms are added to account for the depositic
energy, and it is always behind the location of the precalculated shock front. To get
advantages of simulation with lower computational requirements, the effective react
zone is always constrained to be a finite number of cells thick (between 1 and 8, but m
less than 20, say).

As the grid is refined and the cell thickness goes to zero, the region where the source te
make their contribution is limited to a sharp front with zero thickness across which there
jumps inthe dependent state variables. The program burn source doses historically have
prescribed only by peculiar, discrete algorithms used in particular codes. Necessarily, tt
discrete algorithms must be limited to partial differential equations for the inert compressi
Euler equation with delta function sources centered at the location of the sharp frc
The front is then externally prescribed by a precalculation of the shock motion. The de
function source terms, represented in the partial differential equations along with the sh
motion specification, define the program burn model independent of its discretization anc
numerical algorithms that might be used to solve it. One thing is clear from this discussi
the solutions of the reactive Euler equatiansnotsolutions of the equations of the program
burn model.

In this paper we consider the following problem: How does one make consistent &
robust discrete approximations of physical detonation flows with a finite length reacti
zone as modeled by the reactive Euler equations, with a discrete approximation to a prog
burn model that has the reaction zone and shock collapsed entirely to a single discontint
front?

If we want to design a PB model that has solutions that are in some sense close to
of the Euler equations for a reactive flow, then the quality of the predictions will depend
the accuray of the shock dynamics that are used as input in the precalculation of the st
motion. If we use an approximation to the shock motion, then the accuracy of approxim
theory in regard to the shock dynamics is paramount. This issue must be decided irrespe
of numerics. Detonation shock dynamics (DSD), developed by a collaboration of the auth
Bdzil and Stewart [3, 4], is an asymptotic theory based on a large radius of curvature
the shock relative to the reaction zone length and it has been used succesfully to com
detonation shock motion. A compendium of results of DSD can be found in the revie
paper [5].

In Section 2 we briefly present direct numerical simulations of the reactive Euler equatic
that are to be used as the benchmark calculations for the rest of the paper. The geor
considered is planar, cylindrical, or spherical. For both cylindrical and spherical geome
curvature of the lead shock is present. In Section 3 we compare the solutions obtained f
DNS to those obtained from DSD. In Section 4 we discuss a traditional pressure-ba
program burn (TPB) model. Section 5 presents modified models aimed at improving
weaknesses inherent in the TPB model, especially when curvature is present. This new
of models will be referred to as modified pressure-based program burn models (MPB).
essential difference between TPB and MPB is that TPB uses a Huygen'’s construction
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the shock propagation rule (shock propagates with the Chapman—Jouguet speed), \
if curvature is present, MPB uses a propagation rule based on DSD. Finally, conclusi
are given in Section 6. We also note that in the mid-1990s Bdzil and Stewart modif
major TPB codes at Los Alamos National Laboratory to include curvature dependel
using DSD theory. Also, systematic comparisons were made between TPB models
DNS simulations and their work was not published at that time. To our knowledge this
the first discussion of these models and is a partial record of our earlier work.

2. DIRECT NUMERICAL SIMULATIONS

Here we present the reactive Euler equations whose solutions are used to compare
those of the program burn models presented in subsequent sections. We take the
calculations to be “exact” and assume that any differences in solution structure are du
the various definitions and approximations inherent in the program burn models themsel

For the DNS calculations, the conservative formulation of the reactive Euler equatic
is given by

Ui+ Fx =G +dr, (1)
where
U =1[p. pu. E, pA]", @)
F = [pu, pu? + p, u(E + p), pur]", 3)
G =L [pu, pu2 u(E + p). purl™. G=1[0.0.0,1]", (4)

X

wherep is the densityp the pressurey the velocity, ancE the total energy, defined by

E:p(e—i-;uz). (5)
The specific internal energy é anda is the mass fraction of the deficient component with
A = 0 for unreacted material and= 1 for completely reacted material. The geometric
source terms from the flow divergence are represented explicitid byhe choice of
j determines the geometry;= 0O for planar,j = 1 for cylindrical, orj = 2 for spherical
geometry. If one assumes a cylindrical/spherical shock, the shock total cunvéduedated
to the radius from the center of the coordinate systemiy j/x.

The explosive is described by the constitutive forms for the energy and rate laws. For
paper our baseline example of a condensed phase explosive is that considered in [9
used as a test problem in [6, 7]. The equation of state is for an ideal gas

e P, ©)
y—1p

wherey is the ratio of specific heats ar@@ is the heat of reaction for the detonation. The
reaction rate is given by

r=k@—n2 7
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FIG. 1. Plot of the structure for the cage= 1 (cylindrical) at timet = 40 us.

The valuesQ = 4 mn?/us? andy = 3 are taken, with upstream conditiopg = 0, pg =
2 glen?, ug = 0, andk = 2.5147 s~ 1. These values give a Chapman-Jouguet detonatic
speed oD¢; = 8 mmjus, and a steady state one-dimensional reaction zone length of 4 m
To carry out the DNS, these equations are solved with a third-order TVD Runge—Ku
scheme with a fifth-order WENO spatial scheme [10, 11, 14]. The grid is uniform wif
Ax = 0.1 mm, which puts roughly 40 grid points in the reaction zone. Results for 80 gr
points in the reaction zone are essentially the same. In all cases, the CFL number was t
to be 0.4. Figures 1 and 2 show wave structures for the case of the case of cylindrical
spherical geometry, respectively. For all the figures shown in the paper, the density un
g/cn?, the pressure scale is GPa, the velocity scale isisithe length scale is mm, and
the curvature scale is nmh,

3. DSD ASYMPTOTIC THEORY AND COMPARISON TO DNS

In this section we briefly state the asymptotic theory of detonation shock dynamic thec
a key ingredient of the program burn model that is presented in subsequent sections
compare certain flow features between DSD theory and the DNS calculations of the reac
Euler equations presented in the previous section.

3.1. DSD Theory

DSD theory is an asymptotic theory which describes the motion of the detonation she
via an intrinsic partial differential equation that relates the normal shock veldxity
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FIG. 2. Plot of the structure for the cage= 2 (spherical) at timé = 40 us.

the shock curvature, and their time derivatives [5]. For our purposes we focus on th
simplest version of DSD that relates the normal shock velddifyto the curvature. The
relevant equations, consistent with an asymptotic truncation of the reactive Euler equat
(presented in a nearly integrable form), are

d(pU
M +xp(Un+ Dp) =0, (8)
an
a(pU2 +
(pannp) + kpUn(Un + Dn) =0, %)
0 1
%(H b + Eu,%) _o, (10)
oA 1
A 11
an U, ©, (11)

wheren is the coordinate normal to the detonation front, Blad= u, — Dy, is the relative
normal velocity in the shock-attached frame.

An alternative form of the energy equation, dubbed itiester equationis found by
using the chain rule oer(p, p, 1) in (10), using the mass equation to substitute for the
spatial derivative op, and then using the momentum equation to substitute for the spat
derivative of the pressurp. With the standard definition of the sound speed for an ides
equation of state (EOS)? = yp/p, one obtains

(c®—Up) a;:]” = Qr(y — 1) — kc®(Up + Dp). (12)
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FIG. 3. Plot of the shock speel, and the sonicx) states as a function af.

Thegeneralized CJ conditiorf®llow from the master equation. When the flow is locally
sonic with

n=c?-U2=0, (13)

and the velocity gradient is finite, it follows that the right-hand side of (12) must also |
zero; i.e.,

® = Qr(y —1) —xc*(U, + Dp) = 0. (14)

The first condition is thesonic condition while the second is ththermicity condition
These conditions hold for detonations that travel near or at the CJ detonation velocity.
simultaneous mandates that the sonic and thermicity conditions be satisfied manda
relationship betweern andD,,. For such solutions one can find the sonic, or stargtates.
The solution of this nonlinear eigenvalue problem can be done numerically if desired «
the sonic states can be found as a function of the local curvatéelot of the sonic states
is shown in Fig. 3 for the condensed phase example of the previous section. Note tha
« = 0, the sonic states are the CJ states,Bpe= Dc,.

3.2. DSD-DNS Comparisons

Comparisons of DSD theory with DNS have been carried out for the cases of de
nation along a two-dimensional rate stick, in a converging channel, and in a diverg
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FIG. 4. Plot of D, and the sonic«) states as a function effor DSD (solid) and DNS (circles). Cylindrical
geometry.

channel [6]. In all three cases, the shock front locations as computed from DSD t
ory and from DNS were compared and good agreement between the two was fol
Similar comparisons can be found in [7, 8]. However, a simple and direct comparis
between DSD and DNS can be carried out by considering cylindrical or spherical (
ometry where the curvature is explicitly known and the equations are essentially o
dimensional.

Figures 4 and 5 show a comparison of the shock velocity versus curvature and the s
states calculated from the DNS of the Euler equation, and that predicted from DSD theory
cylindrical and spherical geometry, respectively. In each figure, the solid curve correspo
to DSD theory, and the circles correspond to the DNS calculations. The wave front v
determined to be at the location wheravas 0.1. The shock speed was computed from:
numerical difference of the shock locations. Note the good agreement for both cylindri
and spherical geometries as the curvature goes to zero, i.e., the long-time solution. For |
values of the curvature, the agreement between the two diverge, either due to the tran
effects of the DNS calculations at the earlier times or due to the first-order and quasi-ste
approximation of DSD theory, where the time derivatives have been ignored.

4. TRADITIONALLY IMPLEMENTED PROGRAM BURN MODELS

Here we discuss the basic ideas behind the implementation of program burn asithas t
tionally been implemented in design hydrocodes used for explosive engineering. Althot
several versions exist, we shall discuss only one model, the traditional pressure-b:
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FIG. 5. Plot of D, and the sonic«) states as a function af for DSD (solid) and DNS (circles). Spherical
geometry.

program burn model. The other models have similar strengths and weaknesses, anc
model is sufficient for our discussion.

As a computational model, program burn was first posed as a discrete numerical algori
and not in terms of a differential formulation. One of the earliest published references
an algorithm of this type is found in [13]. The algorithm has the following ingredients
(i) There are a predetermined, computational grid and a chosen algorithm for the ir
hydrodynamics. The grid defines the domain of the explosive and the algorithms are L
to solve the Euler equations for the (inert) explosive products. (ii) A graded set of “bu
times,"ty,, are assigned to each computational cell on the grid. The burn times are the tir
at which the detonation shock front crosses the coordinates of the initial position of 1
computational cell. The traditional way to compute the burn times is to select the unreac
explosive geometry, pick the locus of an initial Chapman—Jouguet (CJ) detonation, and t
compute the motion of the detonation shock emanating from the initial locus by means
a Huygens construction. The Huygens construction propagates the shock normal to i
at the constant CJ wave spedd;. (iii) A cell-based algorithm either adds energy to
designated burning cells or modifies the equation of state in cells during the interval of
shock passage over the cells, as dictated by the precalculated burn times. The equati
state adjustment has been done in various ways through increments in either the pre:
or the specific volume, hence the variations referred to earlier.

In what follows, we give a description of a traditional pressure-based program bt
algorithm which modifies the equation of state in the burning cells. The definitions of tl
burn fraction, the burn time field, precalculated shock motion, and modification of tl
equation of state are key ingredients of the model.
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4.0. Definitions
4.0.1. Burn Fraction

Based on a previously calculated assignment, each cell is assigned a butty.tifitike
current time of a cell is below the burn tintex ty,, then the cell is not burning and the burn
fractionY is assigned zero. If > t,, then the burn fraction must be calculated. The burr
fraction is usually assigned to be the volume fraction of the undisturbed cell that has b
crossed by the detonation shock at that time and hence has a computed vaNie; D.
The details of the burn fraction assignment depend on the grid and specific algorithm
whether the burn times are stored at cell centers or at the nodes. If the whole cell has |
crossed, the burn fraction is simpfy=1.

4.0.2. Burn-Time Field

Once the burn-fraction algorithm is selected, the discrete field of burn fraction can
precalculated from the discrete field of burn times. While (as the grid is resolved) t
burn times are limited to a piecewise continuous field in the domain of the unshock
explosive, the discrete burn-fraction field must limit to a singular Heaviside function whi
is attached to the contours of the burn-time field (i.e., the precalculated shock position).
burn time field is precalculated with a Huygens construction. Thus, once the unreac
explosive geometry is selected and the initial locus of an initial CJ detonation is picked,
motion of the detonation shock that emanates from the initial locus is computed by me
of a Huygens construction.

4.0.3. Shock Surface Motion and the Limits of Discrete Fields

The way to express these ideas mathematically is as follows. Let the burn-time field |
piecewise continuous field with a discrete representation on a grid which covers the don
of the unreacted explosive, given by

tp(X). (15)
Then at a fixed timéy, the shock locations are the contours of the burn-time field
to = tp(Xs), forx = Xs. (16)

The limit of the discrete burn-fraction field at a tingeas the mesh is resolved is representec
by the Heaviside function

H[(X — Xs(to)) x ], (17)

wherefi is the normal to the shock that points in the direction of propagation.
As an example, consider a one-dimensional detonation wave propagating with cons
positive speedc;. Then, according to Huygens’s construction, we have

dXxs

— =D 1
¢ = Doy 18)
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wherexs is the location of the detonation front at tirhdntegrating we get the motion rule
for the front

Xs(t) = Xo 4+ tDcy, (19)

wherexg is the initial position. The domair < X is assumed to be completely reacted,
and is unreacted fot > x. This relationship can be inverted to yield the burn-time field

Xs — Xo
Dcsy

tb(Xs) = (20)

For the discrete approximation, let the numerical grid have a uniform mgshith grid
spacingAx. Then the discrete version of the burn field can be written as
Xi — Xo

th(X) = Doy for xi > Xo. (22)

Note that the burn time is not defined far < Xo, which indicates that this region of the
flow field has already reacted. Also note that the burn time is piecewise continuous in
unreacted domain.

For the prescription of the burn-fraction, which we shall denoterhywe updatey;
according to the rule

0 Xj > Xg,
Y, = XSA*XXi Xs — AX < Xj < Xs, (22)

This particular description of the burn fraction is defined over a single cell. In the limit :
AX — 0, we see that the burn fraction approaches a Heaviside function. Figure 6 sh
a sketch of the shock position as a function of time and a sketch of the burn fraGtion
distributed over two cells. The use of the burn fractiors described in more detail in the
following section.

t (A) (B)
A X
=1 Xs
L Y=0
| | | ™~ + -
| | | !
Xis Xin i1 Xy Xin
X, X

FIG. 6. (A) Sketch of the shock locatiox(t) as a function of time. (B) Sketch of the burn fractigron a
discrete grid.
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4.0.4. Modification of the Equation of State and Apparent Weak Detonation Structure

In the traditional pressure-based program burn algorithm one assumes an equatic
state for the inert products

€productd P> V) = €(p, v).

Since condensed explosives are being considered, the initial pressures (one bar) ar
tremely small compared to the detonation pressures behind the lead shock (hundre
kilobars) such that the pressure ahead of the shock in the unreacted explosive can be
sidered to be zero. This is similar to the strong shock approximation. In a PBS, the burr
cells where the burn-fractio¥ is between 0 and 1, the equation of state is modified b
replacingp with p/Y to obtaingducd P/ Y, v). Thisis equivalent to replacing the pressure
with a partial pressure which is reduced by the burn-fraction for that cell. Wherl, the
equation of state for the products is recovered. Finally, in the unburnt cells in the unrea
explosive one must give an energy that is consistent with the heat of detonation. Thi
done in the following way. One considers the standard Rankine—Hugoniot relations fc
gasdynamic discontinuity for a steady Chapman-Jouguet discontinuity traveling at lab
tory speedDc; One then sets the energy datesin the unreacted explosive consistent
with that algebra. The equation of state for TPB can thus be written as

e=ex (1- H[()? — Xs(1)) x n]) +eproducts(p/Y’ v) X H[()? — Xs(t)) x nl. (23)

An example of selecting is presented in the following section.

If we consider the pressure variation across the shock during a PB, the pressure start
from zero and is brought up to a high value near the CJ pressure. Indeed, when the
fractionY is zero, the pressure is necessarily assumed to be zero. In fact, the scheme «
putes the pressure and is based on an assumed equation of state. Therefore, the unde
hydrodynamic algorithm must increment the pressure in such a way that the internal en
is assumed to b#nite. A simple conclusion is that the effective reaction zone structure
traditional program burn starts at the unreacted state at the ambient pressunet and
the shock state. If the program burn algorithm can be interpreted in terms of an effec
distributed rate law, then the corresponding detonation structure looks like a weak d
nation, and not a strong detonation. Note that the physically based argument that a v
detonation needs a supersonic trigger to start the chemical reaction is absentin a PBS,
the precalculated shock motion provides the sequenced burn-times for the cells that tri
the change in the equation of state in the vicinity of the shock. An alternative interpretat
is that the PB scheme is a capturing scheme which intends to capture states that are n
at the steady state equilibrium CJ values. Hence, the physical reaction zone structure
the inert unreacted shock state (the von Neumann spike) to the sonic point that norm
would be computed as part of the reaction zone in a DNS is cut off and not represente:

4.1. Example: Ideal EOS

To illustrate the traditional implementation of program burn, we will start with an ide:
EOS for the detonation product,p, v)
p

e(p, v) !
,V) = ————.
y—1p
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4.1.1. CJ States

To compute the CJ states, we first assume that the unburnt upstream state (with the s
shock approximation) ahead of the wave is given by

p=po, U=0, p=0, e= g, (24)

with ey unspecified at this point (but to be chosen in the course of the analysis). £et []
()o — ()p denote the jump in a quantity across the interface from the 0-state ) to
the completely burnt stat&'(= 1) denoted by & subscript. The normal jump conditions
across the interface moving with speld are given by

[p(un — Dp)] =0, (25)
[pUn(Un — Dn) + p] =0, (26)
[E(Un - Dn) + Un p] =0, (27)

whereE is the total energy defined earlier. With the ideal EOS for the burnt products, t
jump condition algebra derives a quadratic equation for the normal particle velggity
say. If we identify the speeD, as the CJ valuelic;), the quadratic equation for, can be
solved to give

4 — Dot VDE,—2(y2— ey
n— )/+1 .

(28)

The CJ-state is found by setting with the zero of the argument of the radical equal
zero, which leads to the identification of either the; in terms of the energg, or vice
versa. Since we generally regddd; as being given experimentally, we choose to write the
condition as

=201
Then the CJ-states are
y + 1) poDg, Dc;
= ), = , Ugyj= ——. 30
oca ,Oo< ” Pca v 11 cJ v 11 (30)

Italso follows simply that the CJ-state is locally sonic. Note that in working out the Rankin
Hugoniot jump conditions across a program burn discontinuity, from the unreacted explos
to the burnt explosive where the burn fractignis set equal to one, one obtains exactly
the same Rankine—Hugoniot algebra as the reactive Euler equation wiseset equal to
one. Thus, the variation of a burn-fraction variable has no effect on the calculation of 1
CJ-states themselves.

As an example, we take the condensed phase explosive found in [9]y\WitB, pg =
2 g/lcc, andD¢y = 8 mmjus, we get for the CJ-states

8
peI= 3 glcc pcy=32GPa ucy=2 mmjus. (31)
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4.1.2. Equation of State with Modified Pressure and Effects on the Structure

In keeping with the notion that one replagesvith p/Y in the burning cells with O<
Y <1, the ideal EOS becomes
1 p
e=———. 32
VL (32)
Again one assumes that in the fresh material one has the same initial specific internal en
€y, and the role o0&y is the same as the heat of detonation.

To further analyze this structure, I8}, = u, — Dy, be the relative normal velocity in the
shock-attached frame. For a quasi-steady traveling wave, the RH relations hold throug
the structure, except now the internal energy has the dependence on the burn ¥adson
before, one can again solve the RH relations

oUn = —poDn (33)
pUZ+ p = poDi (34)
e+}U2+E=eO+}D2 Withe=L (35)
2" p 2" pY(y — 1)’
for a quadratic equation id,, with solutions
[1+( —=DYIDn+/D3—2(y - DY[2+ (v - DY]e&
Un = — . (36)

2+ (y — DY

WhenY = 0, the plus root corresponds to the unreacted flow state, and hence to the stal
point for a weak detonation structure,

Uy=-D,, or u,=0. (37)

The root associated with the minus sign is pathological andJyas 0 oru, = Dy, and
corresponds to a finite pressure but infinite density. In contrast, the standard strong sl
stateU, = —(y — 1)/(y + 1) Dy is achieved if the equation of state= pv/(y — 1) is
used instead of the modified equation of s&ate (p/Y)v/(y — 1).

The issue is which state is selected, and we turn to the acoustic character of the distrib
structure next. From the fundamental definition of the sound speed,

2 _ p/p? — de/op
de/ap

we have

2=Punyro -y
0
Next, if we use the energy equatien- p/p + U?2/2 = D2/2 + e and use the definitions
of e and the last result for?, we can eliminate/p in favor of c and write an expression
for the sonic parameten, as

1
n=c>—U2= e0+§(D,%—u,$) (y =Y — U2
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FIG. 7. Ug;, Y-plane showing the trajectory of the weak CJ detonation. The dash curve corresponds to
sonic locus given by (38) and the solid curve corresponds to the weak structure given by (36). (The strong stru
branch is not shown.)

If the detonation wave starts out on the weak branch, th¥n-a0,c = 0, andU,, = —D,,,

the sonic parametey = —D?2 < 0, and the wave is supersonic at the point of the lea
disturbance. In fact one can compute the sonic locus i¢aY)-plane by setting? = U2

to obtain

2 7y —DeY
"+ 12y - DY]

(38)

The character of the structure of the (weak) detonation can be characterized by plotting
trajectory in a U, Y)-plane. The weak CJ solution trajectory starts from the undisturbe
state,U, = —D, and terminates at the sonic state. Figure 7 shows this trajectory for t
specific case oD, = D¢ Note the square root behaviorlih, asY — 1, suggesting that
the normal derivative has a square root singularity. This is due to the fact that the thermi
condition in the master equation does not vanish at the sonic point.

The other required ingredient for a weak detonation is a supersonic trigger. Ordinarily,
supersonic trigger is regarded as physical. But for its application as a numerical algorit|
program burn assigns times at which the cell releases its energy. Specifically, the valu
the burn fraction is changed frosh= 0toY = 1 in proportion to how much of the particle
cell has been crossed by an assumed shock wave. Therefore, the distribution of times v
the cell is crossed by a shock is known a priori, and is used to create the supersonic tri
For steady, one-dimensional flow for a CJ detonation, the burn times simply and exa
reflect the CJ detonation velocity.
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We note that the state variables do depend on the burn fraction if the burn fraction w
distributed in a discrete representation, i.e., not resolved to a Heaviside step function.
the burn fraction distribution on a finite mesh has the appearance of a pseudo-reaction-
structure. We will model this distribution not by a difference-based scheme, but insteac
an “effective” rate law in the steady detonation frame,

Y
Una—n = R(Y), (39)
where R(Y) is the effective reaction rate. In actual practice this rate is not given at a
rather the numerical scheme that defines the burn fraction merely makes an assign
for the increase ir¥ such that it goes t& = 1 when the detonation shock crosses the
computational cell completely, arR(Y) is inferred from the details of that assignment.
But certainlyR(Y) is both grid- and algorithm-dependent.

Integration of (39), with the weak-structure relation betwdgrmandY and the condition
thatY = 0 atx = 0 (which is equivalent to the specification of the triggering event at th
program burn time), leads to a distribution functd¢x) which has the basic profile shown
in Fig. 6.

Animportant observation is that the thickness of the heat-release zone in the program|
reaction zone will be a function of the grid thickness and can be computed asymptotic:
as O(AX), such that asA\x — 0, the program burn reaction zone vanishes, as measur
relative toany physical length scale. Thus, the effect of the numerical algorithmRi4}
imitates is to approximate a delta function, centered at the burn times and locations on
grid as dictated by the burn table.

4.2. Numerical Results of TPB and Comparisons to DNS

Here we present numerical results comparing the solutions obtained using the traditi
pressure-based program burn model (TPB) to the solutions obtained from a DNS calcule
that is desribed in Section 2. For the TPB model we solve the corresponding nonreac
Euler equations with the EOS given by (23) and (29). Although most TPB implementatior
current codes use a second-order scheme, we use the same (high-order) scheme that we
for the DNS calculations to minimize differences that may result from the use of differe
numerical algorithms. To restate, we assume that the DNS calculations are “exact,” and
any differences in solution structure will be due to the various approximations inheren
the TPB model.

A mesh with one grid point in the reaction zongX = 2 mm) is used that is typical of
that used in engineering practice. No attempt is made here to optimize nor study the ef
of grid spacing on the solution structures. However, the grid is fine enough to resolve
inert hydrodynamics behind the wave front.

Figure 8 shows the results from the DNS (solid) and from the TPB (circles) calculatic
for planar geometry. (Note that the density spike shown in the DNS record is associz
with the initial start-up transient.) In each case, the solutions were stopped when the st
location reacheds(t) = 100 mm. The arrival times of the two calculations is seen to b
approximately the same (for DNS§= 12.72us; for TPB,t = 12.05us), the 5% relative
difference being due to differences in the grid resolutions and to the modeling assumpt
of the reaction zone by the TPB model. Note how well the program burn model captu
the overall structure. The only differences are seen in the density plot, where the D
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FIG. 8. Plot of the structure for planar geometryxatt) = 100 mm. Circles correspond to the TPB model
(t = 12.05us), and the solid curve to DN$ £ 12.72s).

calculates a weak density jump downstream of the lead shock while the TPB calculati
(with the coarser grid) do not, and in the lead shock region, where the DNS calculatic
show a strong detonation profile while the TPB calculations show a weak detonation pro
We also ran long-time solutions until the shock was located @j = 900 mm, as shown
in Fig. 9. The arrival times of the two calculations have a relative difference of less th
1% (for DNS,t = 11277 us; for TPB,t = 11197 us). Again, note how well the program
burn model captures the overall structure.

The major weakness of the TPB model, however, occurs when curvature is pres
Figure 10 shows the structure from the DNS and from the TPB calculations for the cas
cylindrical geometry. Since the TPB uses a Huygens construction to propagate the sh
we see that the arrival time of the shock to the locattgr= 100 mm is much quicker
(t = 12.075us) than that of the DNS calculationis=£ 15.3 us); this represents roughly a
21% error in the arrival times. This large difference is not due to grid resolution, but ratt
to the TPB modeling of the shock speed using a Huygens construction. Since Huyge
construction overestimates the speed of the shock when curvature is present, we se
ticeable differences in the solution structures downstream of the lead shock. We also
long-time solutions for the cylindrical and spherical cases, until the shock was locatec
Xs(t) = 900 mm as shown in Fig. 11. A close-up look at the structure is shown in Fig. 1.

Interms ofthe structure, the program burn model does seem to capture the overall struc
at the longer times rather well. A closer look at the time behavior can be examined by cc
paring the shock speed and the sonic states to those obtained from DSD theory (see Fig
Note that the TPB-calculated shock velocity overpredicts the DSD-calculated velocity,
that the sonic states are only asymptotic to the sonic states obtained from DSD theory.
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FIG. 9. Plot of the structure for planar geometryxatt) = 900 mm. Circles correspond to the TPB model
(t = 11197 pus), and the solid curve to DN$ & 11277 us).
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FIG. 10. Plot of the structure for cylindrical geometry ®i(t) = 100 mm. Circles correspond to the TPB
model ¢ = 12.075us), and the solid curve to DN$ & 15.3 4S).
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FIG. 11. Plot of the structure for cylindrical geometry mf(t) = 900 mm. Circles correspond to the TPB
model ¢ = 1120 us), and the solid curve to DN$ & 117.6 4S).
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FIG.12. Blow-up of the shock structure shown in Fig. 12 for cylindrical geometr@ = 900 mm. Circles
correspond to the TPB model£ 1120 us), and the solid curve to DN$ & 117.6 us).
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FIG. 13. Plot of D, and the sonicx) states as a function affor DSD (solid) and TPB (circles).

The above results illustrates the strength and weaknesses of using the traditional pro
burn model to capture the physics of real detonations. For the planar case, the sho
propagated at the correct CJ speed, and the structure is represented well witpdly 1
the number of grid points. This represents significant computational savings. Howe
when curvature is present there are major differences in not only the shock location
also in the structure of the solution. These differences are due to the fact that Huyge
construction overestimates the speed of the propagating shock. Since curvature is pr
in almost all engineering devices, it is essential to properly take into account effects du
curvature. It is this weakness that we address in the subsequent section of this paper.

5. MODIFIED PRESSURE-BASED PROGRAM BURN MODELS

In the previous section we have seen that when curvature is present, the TPB m
overestimates the detonation shock speed, due to the use of Huygens’s construction.
leads to significant differences of the shock location and to a lesser extent to differer
in the structure between the DNS and the TPB simulations. A simple modification can
made by extending the theory to include curvature dependent shock velocity, as is foun
DSD theory. In particular, we modify the burn times to include the curvature dependen

dxs
E = Dn(K), (40)

and computeD, according to DSD theory, for a particular equation of state. Having dor
this the next question is what is the best way to model the physical reaction zone? N
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we present four models that aim at being improvements to the TPB model, especially w
shock curvature is present.

5.1. Model | or MPB-1

In this model we modify the upstream internal energy to account for curvature effec
namely

O (41)

O 202-1

whereD,, = Dy(k) is the curvature-dependent shock velocity determined from DSD theor
This program burn model is composed of modification of the burn times according to (4
and the assignment of the explosive upstream energy according to (41).

Figure 14 shows a comparison of results of the DNS and MPB-1 for cylindrical geomet
Note that a simple change in the way the burn times are computed and in the defini
of the upstream internal energy can lead to significant reductions in differences betw
the two. As for the case of comparison between the TPB and DNS, the simulations w
stopped when the shock location reackted) = 100 mm. The arrival times of the shock
for the MPB-1 and DNS is seen to be approximately the same (for DNS15.3 us; for
MPB-1,t = 14.2 us), and the 7% relative time of arrival difference is a major improvemer
when compared to the 21% relative time of arrival difference in the arrival times found
comparing the TPB and DNS. Comparing Figures 10 and 14, we see that the MPB-1 do

0 50 100 150 0 50 100 150

0.8

0.6

0.4

0.2

0 50 100 150 0 50 100 150
X X

FIG. 14. Plot of the structure for cylindrical geometry withx = 2 mm atxs(t) = 100 mm. Circles cor-
respond to the MPB-1t (= 14.2 4s), and the solid curve to DN$ £ 15.3 us).
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FIG.15. Plotofthe structure for cylindrical geometry wittx = 2 mmatxs(t) = 900 mm. Circles correspond
to the MPB-1 { = 11676 us), and the solid curve to DN$ & 117.6 uS).

better job of capturing the pressure and velocity profiles than does the TPB model. The |
time solution, wherxs(t) = 900 mm, is shown in Figs. 15 and 16, and should be compare
to Figs. 11 and 12, for the TPB model.

However, MPB-1 fails to capture the correct sonic {drstates. Capturing the correct
sonic states is an important indicator of how well a given scheme does since both
strong detonation and the weak detonation should terminate at this point. In Fig. 17
plot the sonic states as computed from the MPB-1 simulations against those determ
from DSD theory. We take this comparison to indicate that there is still an unaccepta
large discrepancy, even though the correct speed dependence on curvature is incorpc
into the MPB-1 model. In Fig. 18 the computed sonic states are shown for the grid w
AX = 0.5 mm and there is better agreement with the DSD sonic states. In these calculat
the energy released is still over a single grid point, so redugirgeduces the effective
reaction zone. Also note that the oscillations in the shock spgabserved in Fig. 17 have
been reduced by grid resolution. Note that extreme refinement of the MPB-1 model viol
the spirit of the program burn model, i.e., that it should be used on a relatively coarse g
and no further grid refinements are shown here.

5.2. Model Il or MPB-2
For model MPB-2 we keep the specification of the upstream internal energy unchan

Dg,
®=73

| 42
(y2-1 (42)
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FIG. 16. Blow-up of the shock structure shown in Fig. 15 for cylindrical geometry with= 2 mm at
Xs(t) = 900 mm.Circles correspond to the MPBt1= 11676 us), and the solid curve to DN$ £ 117.6 u4S).
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FIG. 17. Plot of D, and the sonic«) states as a function af for DSD (solid) and MPB-1 (circles) with
AX =2mm.



PROGRAM BURN ALGORITHMS 893

3 2 1 0 3 2 1 0
10

FIG. 18. Plot of D, and the sonic) states as a function af for DSD (solid) and MPB-1 (circles) with
AX = 0.5mm.

but modify the length scale of the program burn reaction zone to mimic the reaction z«
thickness of the physical problem. Thus, we allow the energy to be released over a nur
of cells behind the precalculated shock front. However, the resolution of the energy rele
is still much too coarse to be considered equivalent to that of a resolved DNS. For the T
model, the program burn reaction zone thickness is kept at one grid cell, independent of
resolution. Thus, as the grid size becomes smaller, so does the program burn reaction
thickness. However, for MPB-2 we preassign a program burn reaction zone thickness wi
has a length scale of approximately the same size as that of the physical (DNS) prob
so that as the grid size becomes smaller, the program burn reaction zone stays fixed ar
number of computational cells within it increases. In particulat, i€ the program burn
reaction zone length, we select the number of computational cellgithin the zone so
that

NAX = L. (43)

Forthe DNS example, the 1D Chapman—Jouget reaction zone length is 4 mm. Therefore
these tests, we set our program burn lengta 4 mm for simplicity. Thus, the MPB-2 model
consists of using the DSD-based burn-time calculations that are given by the integratio
(40), the assignment of the full upstream energy according to (42), and the release o
energy oven-cells according to (43).

Figures 19 and 20 show results for MPB-2 for two different grid resolutions. In Fig. 1
the grid resolution is 2 mm ama= 2. Note that the near-shock structure is quite differen
from that of MPB-1 (compare Fig. 14). For MPB-1, the upstream value @$ reduced
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FIG. 19. Plot of the structure for cylindrical geometry withx = 2 mm atxs(t) = 100 mm, withn = 2.
Circles correspond to the MPB-2 £ 14.5 4s), and the solid curve to DN$ & 15.3 us).
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FIG. 20. Plot of the structure for cylindrical geometry withx = 0.5 mm atxs(t) = 100 mm, withn = 8.
Circles correspond to the MPB-2 £ 14.5 us), and the solid curve to DN$ & 15.3 us).
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FIG. 21. Plot of the structure for cylindrical geometry withx = 2 mm atxs(t) = 900 mm, withn = 2.
Circles correspond to the MPB-2 £ 117.76 us), and the solid curve to DN$ £ 117.6 us).

and depends on curvature through the dependende,oand the structure looks like a
weak detonation. However, for MPB-2, wheyis fixed to be the full explosive energy, the
discrete near-shock structure looks like a conventional strong detonation. Decreasinc
grid size for MPB-2 to 0.5 mm witm = 8F not only captures the overall flow structure
better than the coarse resolution, with= 2, but also does a better job of capturing the near
shock detonation structure. The same is true at the longer times, where we show a blo
of the structure for a grid resolution of 2 mm with= 2 (Fig. 21) and a grid resolution of
0.5 mm withn = 8 (Fig. 22). The captured sonic states for MPB-2 are comparable to thc
shown in Fig. 18, but were found to be noisy and are not shown.

5.3. Model lll or MPB-3a and MPB-3b

Here we present results from third model that has two variations that we dubb MPB
and MPB-3b. In this case we add mass and momentum source terms, in addition to an er
source term. Models MPB-1 and MPB-2 only added energy source terms. The formula
for MPB-3 are given by the equation

Ut + [Ex =G+ éRé(x—xs(t))’ (44)
where

L_j =[103 ou, E]T’ (45)
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FIG. 22. Plot of the structure for cylindrical geometry withx = 0.5 mm atxs(t) = 900 mm, withn = 8.
Circles correspond to the MPB-1tl £ 14.5 us), and the solid curve to DN$ £ 117.6 us).

F =[pu, pu2+ p, u(E + p)”, (46)

é = _Jg [IOU, ,OUZ, (E + p)u]Tv (_j = [le Q2a Q3]T7 (47)

wherekE is the total energfe = p(e+ %uz) ande is the internal energy that is described
below. Note thaRs«x—_x.t)) is @ delta function centered on the program shock lacssxs(t)
and the geometric source ter@ is identical in its first three components of its DNS
counterpart. The source strengtﬁsare identified below.

Model MPB-3a uses the same modified EOS as the TPB model,

p/Y

R o L 48
¢ ey =1 (48)

and the upstream value of the internal eneegyis given by (41). Model MPB-3b uses the
standard equation of state without the burn fraction for the ideal gas

p

=" 49
€ ey =1 (49)

The upstream value of the internal energy is giverepy= 0, consistent with the strong

shock approximation. To completely specify the program burn PDES one must identify
source term strengt@. Various specifications are made and analyzed below. (Alternative
and perhaps more consistently we could have chosen the energy datum to be given by
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The explosive’s chemical energy is typically assigned to the unreacted solid. But the res
do not depend on a specific constant value of the energy datum. For model MEB=3D,
was chosen for simplicity.)

One way to determine values oif is to make the quasi-steady assumption and negle
the explicit dependence of curvature in the program burn equations. The lead shock is t:
to be atx = xs(t) with speedD,,, which can depend on curvature and is given byhex
relation from DSD theory. Across the shock we allow for doses to the mass, momentt
and energy, and the jump conditions across the program-burn shock are given by

[o(un — Dp)] = Qq[Y], (50)
[oUn(Un — Dn) + p] = Qo[Y], (51)
[E(un — Dn) + unp] = Q3[Y], (52)

where p] = ¢o — ¢*, and the sonic states are determined using DSD theory. Note that
writing down these normal jump conditions we assumed Ryat dY/dn, wheren is the

normal coordinate. Since the shock location is known, and both the upstream states
the sonic states are known, the jump relations become formulas for explicit evaluatior

the dose<.
Evaluating the jumps leads to the following specifications for the compone@s of

Q1 = poD + p*(U* — Dp),
Q2 = p* + p*u*(U* — Dy), (53)
Q3 = po&gDn + E*(u* — Dy) +u* p*~

A plot of the sonic states was given previously in Fig. 3 for the condensed phase explo
example given in [9]. The values 63 as computed from these formulas is shown in Fig. 2:
for both MPB-3a and MPB-3b, respectively. Results for the two models are given in Figs. 2
27 for MPB-3a and in Figs. 28-31 for MPB-3b. These results are in qualitative agreeme
with TPB (Model ).
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FIG. 23. PlotofQ; (solid), Q. (dotted), andQ; (dashed) as a function effor models MPB-3a and MPB-3b,
respectively.
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FIG.24. Plotofthe structure for cylindrical geometry wittxk = 2 mm atxs(t) = 100 mm. Circles correspond
to the model MPB-3at(= 14.2 us), and the solid curve to DN$ & 15.3 us).
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FIG.25. Plotofthe structure for cylindrical geometry wittx = 2 mm atxs(t) = 900 mm. Circles correspond
to the model MPB-3at(= 116.2 s), and the solid curve to DN$ & 1275 us).
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FIG. 26. Plot of D, and the sonic«) states as a function af for DSD (solid) and model MPB-3a (circles)
with Ax = 2 mm.
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FIG. 27. Plot of D, and the sonic«) states as a function af for DSD (solid) and model MPB-3a (circles)
with Ax = 0.5 mm.
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FIG. 28. Plot of the structure for cylindrical geometry withx = 2 mm atxs(t) = 100 mm. Circles co-
rrespond to the model MPB-3b £ 14.2 us), and the solid curve to DN$ £ 15.3 us).
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FIG.29. Plotofthe structure for cylindrical geometry wittx = 2 mm atxs(t) = 900 mm. Circles correspond
to the model MPB-3bt(= 1162 us), and the solid curve to DN$ & 127.5 us).
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FIG. 30. Plot of D, and the sonic«) states as a function af for DSD (solid) and model MPB-3b (circles)
with Ax = 2 mm.
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FIG. 31. Plot of D, and the sonic«) states as a function af for DSD (solid) and model MPB-3b (circles)
with Ax = 0.5 mm.
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6. CONCLUSIONS

We have presented a comprehensive review of the traditional, pressure-based prot
burn algorithm and have compared solutions to those of a direct numerical simulation
was shown that if curvature is present, the TPB alogrithm overpredicts the shock spee
slight modification to the burn times, based on detonation shock dynamic theory, can cor
the shock speed difficulty. Various models are presented and compared to DNS; ove
the results of Model Il (constant upstream value for the internal energy, fixing the progr:
burn reaction zone length) give results which surprisingly capture the DNS structure, e
with a grid resolution of about five times larger than that of the DNS. We are current
investigating these models in two-dimensional geometries and extension to real proc
equations of state.
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